

Bovine tuberculosis in Michigan: the role of of elk in the bovine Tuberculosis transmission

D.J. O'Brien, M.K. Cosgrove, T. P. Stuber, A. Schooley, J. Crispell, S. Church, Y.T., Grohn, S. Robbe-Austerman, R.R. Kao

Bovine Tuberculosis Mini-Symposium

8 June 2017 Liliana Salvador

Cattle farms surrounded by deer habitat

Cattle farms surrounded by deer habitat

Bovine TB cases in deer

Population size in last 10 years: 1.7-2 million animals

Bovine TB cases in elk

O'BRIEN, Daniel J., et al. Journal of Wildlife Diseases, 2008, vol. 44, no 4, p. 802-810.

Population size in last 10 years: 800-1500 animals

Bovine TB cases in deer and cattle farms

- Total farms: 52 140, average farm size: 191 acres
- 46 cattle herds infected (2005-11): affects cattle trade due to movement restrictions
- Usually single infections, risk of infection is low but constant (3-4 breakdowns/year)
- BTB eradication program: cost of US\$200 million during 1994-2010 in Michigan alone

Mammal Review <u>Malume 45. [soup.3. pages 160-175, 30 JUN 2015 DOI: 10.1111/mam.12042</u> http://anline/http://soup.edicsu.com/doi/10.1111/mam.12042/full%mam/12042-for-0001

How much and how often?

Understanding the role of elk in bTB transmission

Isolates spatial locations

Understanding the role of elk in bTB transmission

Isolates spatial locations

Understanding the role of elk in bTB transmission

Isolates spatial locations

- 53 field isolates from different counties in Michigan:
 5 elk; 9 cattle, 39 deer positive bTB isolates
- Date range: 14 years (1999 to 2013)
- Extract and sequence DNA from all isolates using Illumina sequencing
- Bioinformatic pipeline to align sequences with BWA, and to identify consensus SNPs with GATK (698 sites)

Time-calibrated phylogeny

Substitution model: HKY (supported by *jmodeltest*), strick molecular clock, constant population size

Spatial distribution of clades

Molecular rate of evolution

Source	Bacteria species	mean clock rate/ genome/year
Walker <i>et. al.</i> 2013	M.Tuberculosis	0.50 [0.30-0.70]
Bryant <i>et al.</i> 2013	M. Tuberculosis	0.30 [0.16-0.80]
Biek <i>et al.</i> 2012	M. bovis	0.15 [0.04-0.26]
Trewby <i>et al.</i> 2015	M. bovis	0.20 [0.10-0.30]
Crisp <i>et al. 2017</i>	M. bovis	0.59 [0.30-0.95]
Current study	M. bovis	0.41 [0.26-0.55]

Discrete Trait Analysis (DTA)

- Infer host state probabilities for internal nodes
- Estimate probability transition rate between hosts

Drummond & Rambaut, BEAST - Bayesian evolutionary analysis by sampling trees, 2007 Bouckaert et al. 2014 - BEAST2 - A software platform for bayesian evolutionary analyses, 2014

Discrete Trait Analysis (DTA)

Transition rate matrix (M):

 p_{ce}, p_{de}, p_{dc} :

Probability of transition between different states Probability of Ancestral state (x'), given branch length t and child state x

high prob: strong support of direct migration between states

Drummond & Rambaut, BEAST - Bayesian evolutionary analysis by sampling trees, 2007 Bouckaert et al. 2014 - BEAST2 - A software platform for bayesian evolutionary analyses, 2014

Clade 1 Deer Elk

Clade 2 Cattle Deer Elk

Clade 3 Cattle Deer Elk

Clade 4

Deer

Pathogen transition between host-species

Host-species interaction	Estimated posterior probability of transition between host-species (symmetric)	Estimated absolute transition between host-species (event/genome/year)	Strength of support by Bayes' factor (BF > 3: well supported BF > 10: very strong support)
Cattle-Deer	0.979	0.886	14.17
Cattle-Elk	0.617	0.897	0.49 X
Deer-Elk	0.996	1.224	75.68

Sensitivity analysis 1: Host-species

Sensitivity analysis 2: sample size

 Four major clades with strong support that could not be distinguished from the others by sampling time, hostspecies, nor sampling area

• Mean estimated substitution rate consistent with other *M*. *tuberculosis* and *M*. *bovis* studies

 High possibility of intra-species transmission in the sampled elk, cattle and deer populations

 Strong support for inter-species transmission between deer and cattle, and deer and elk

Conclusions

• There is no support for transmission between cattle and elk

Elk in Michigan not a significant source of *M.bovis* infection and *M. bovis* infection most likely maintained by deer

Conclusions

Elk in Michigan not a significant source of *M.bovis* infection and *M. bovis* infection most likely maintained by deer

Many thanks for listening!

Liliana Salvador <u>liliana.salvador@glasgow.ac.uk</u> Boyd Orr Centre for Population and Ecosystem Health IBAHCM, University of Glasgow

